ISSN: 2155-9899
Sara Rattik, Caitriona Grönberg, Maria F Gomez, Harry Björkbacka, Gunilla Nordin Fredrikson, Jan Nilsson and Maria Wigren
Objectives: Modulation of immune responses against LDL antigens through therapeutic vaccines represents a possible new approach for prevention of cardiovascular disease. The mode of action of these vaccines remains to be fully characterized but the protective effect of immunization with the apolipoprotein B-100 (apoB-100) derived peptide p210 has in several studies been associated with activation of regulatory T cells. The present study used an in vitro model to study the effect of p210 on immune cells.
Methods and results: CD11c+ antigen presenting cells, CD25-CD4+ naïve T effector cells and CD25+CD4+ T regulatory cells were isolated from mouse spleens using antibody-coated magnetic beads. Pre-incubation of antigen presenting cells with p210 conjugated to cationized bovine serum albumin (p210-cBSA) down-regulated the expression of CD86 and MHC class II molecules, inhibited proliferation of pre-activated naïve T effector cells and stimulated conversion of these cells into regulatory T cells. These effects were shown to partly be mediated through a suppression of the release of IL-12 from antigen presenting cells.
Conclusions: The present findings demonstrate that p210-cBSA inhibits proliferation of naïve T effector cells and promotes their conversion into regulatory T cells and this is suggested to be associated with a reduced activation status of antigen presenting cells. Taken together these findings suggest that immunization with p210-based vaccines have the capability of inducing tolerogenic APCs that in turn generate regulatory T cells suppressing T effector cell functions.